A hybrid FL-Enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
Autori principali: | Chowdhury, Asif Hasan, Islam, Md. Fahim, Riad, M Ragib Anjum, Hashem, Faiyaz Bin |
---|---|
Altri autori: | Alam, Md. Golam Rabiul |
Natura: | Tesi |
Lingua: | English |
Pubblicazione: |
Brac University
2023
|
Soggetti: | |
Accesso online: | http://hdl.handle.net/10361/21851 |
Documenti analoghi
-
A hybrid FL-enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
di: Chowdhury, Asif Hasan, et al.
Pubblicazione: (2023) -
Detection of coronary artery blockage at an early stage using effective deep learning technique
di: Promit, Tahmid Ashrafee, et al.
Pubblicazione: (2023) -
Prediction of glaucoma from fundus images leveraging transfer learning in deep neural network
di: Ismail, Sayem Mohammad, et al.
Pubblicazione: (2021) -
MalFam: a comprehensive study on malware families with state-of-the-art CNN architectures with classifications and XAI
di: Haque, Abid Hossain, et al.
Pubblicazione: (2024) -
Cassava leaf disease classification using deep learning and convolutional neural network ensemble
di: Shahriar, Hasan, et al.
Pubblicazione: (2022)