A hybrid FL-enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
Những tác giả chính: | Chowdhury, Asif Hasan, Islam, Md. Fahim, Riad, M Ragib Anjum, Hashem, Faiyaz Bin |
---|---|
Tác giả khác: | Alam, Md. Golam Rabiul |
Định dạng: | Luận văn |
Ngôn ngữ: | English |
Được phát hành: |
Brac University
2023
|
Những chủ đề: | |
Truy cập trực tuyến: | http://hdl.handle.net/10361/21844 |
Những quyển sách tương tự
-
A hybrid FL-Enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
Bằng: Chowdhury, Asif Hasan, et al.
Được phát hành: (2023) -
Prediction of glaucoma from fundus images leveraging transfer learning in deep neural network
Bằng: Ismail, Sayem Mohammad, et al.
Được phát hành: (2021) -
MalFam: a comprehensive study on malware families with state-of-the-art CNN architectures with classifications and XAI
Bằng: Haque, Abid Hossain, et al.
Được phát hành: (2024) -
Cassava leaf disease classification using deep learning and convolutional neural network ensemble
Bằng: Shahriar, Hasan, et al.
Được phát hành: (2022) -
Towards devising an effective and reliable means of fish detection and classification through the exploration of various deep learning algorithms
Bằng: Farhan, Rafid, et al.
Được phát hành: (2024)