A hybrid FL-enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
Автори: | Chowdhury, Asif Hasan, Islam, Md. Fahim, Riad, M Ragib Anjum, Hashem, Faiyaz Bin |
---|---|
Інші автори: | Alam, Md. Golam Rabiul |
Формат: | Дисертація |
Мова: | English |
Опубліковано: |
Brac University
2023
|
Предмети: | |
Онлайн доступ: | http://hdl.handle.net/10361/21844 |
Схожі ресурси
-
A hybrid FL-Enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
за авторством: Chowdhury, Asif Hasan, та інші
Опубліковано: (2023) -
Prediction of glaucoma from fundus images leveraging transfer learning in deep neural network
за авторством: Ismail, Sayem Mohammad, та інші
Опубліковано: (2021) -
MalFam: a comprehensive study on malware families with state-of-the-art CNN architectures with classifications and XAI
за авторством: Haque, Abid Hossain, та інші
Опубліковано: (2024) -
Cassava leaf disease classification using deep learning and convolutional neural network ensemble
за авторством: Shahriar, Hasan, та інші
Опубліковано: (2022) -
Towards devising an effective and reliable means of fish detection and classification through the exploration of various deep learning algorithms
за авторством: Farhan, Rafid, та інші
Опубліковано: (2024)