A hybrid FL-enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
Hoofdauteurs: | Chowdhury, Asif Hasan, Islam, Md. Fahim, Riad, M Ragib Anjum, Hashem, Faiyaz Bin |
---|---|
Andere auteurs: | Alam, Md. Golam Rabiul |
Formaat: | Thesis |
Taal: | English |
Gepubliceerd in: |
Brac University
2023
|
Onderwerpen: | |
Online toegang: | http://hdl.handle.net/10361/21844 |
Gelijkaardige items
-
A hybrid FL-Enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
door: Chowdhury, Asif Hasan, et al.
Gepubliceerd in: (2023) -
Prediction of glaucoma from fundus images leveraging transfer learning in deep neural network
door: Ismail, Sayem Mohammad, et al.
Gepubliceerd in: (2021) -
MalFam: a comprehensive study on malware families with state-of-the-art CNN architectures with classifications and XAI
door: Haque, Abid Hossain, et al.
Gepubliceerd in: (2024) -
Cassava leaf disease classification using deep learning and convolutional neural network ensemble
door: Shahriar, Hasan, et al.
Gepubliceerd in: (2022) -
Towards devising an effective and reliable means of fish detection and classification through the exploration of various deep learning algorithms
door: Farhan, Rafid, et al.
Gepubliceerd in: (2024)