A hybrid FL-enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
主要な著者: | Chowdhury, Asif Hasan, Islam, Md. Fahim, Riad, M Ragib Anjum, Hashem, Faiyaz Bin |
---|---|
その他の著者: | Alam, Md. Golam Rabiul |
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
Brac University
2023
|
主題: | |
オンライン・アクセス: | http://hdl.handle.net/10361/21844 |
類似資料
-
A hybrid FL-Enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
著者:: Chowdhury, Asif Hasan, 等
出版事項: (2023) -
Prediction of glaucoma from fundus images leveraging transfer learning in deep neural network
著者:: Ismail, Sayem Mohammad, 等
出版事項: (2021) -
MalFam: a comprehensive study on malware families with state-of-the-art CNN architectures with classifications and XAI
著者:: Haque, Abid Hossain, 等
出版事項: (2024) -
Cassava leaf disease classification using deep learning and convolutional neural network ensemble
著者:: Shahriar, Hasan, 等
出版事項: (2022) -
Towards devising an effective and reliable means of fish detection and classification through the exploration of various deep learning algorithms
著者:: Farhan, Rafid, 等
出版事項: (2024)