A hybrid FL-enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
Autori principali: | Chowdhury, Asif Hasan, Islam, Md. Fahim, Riad, M Ragib Anjum, Hashem, Faiyaz Bin |
---|---|
Altri autori: | Alam, Md. Golam Rabiul |
Natura: | Tesi |
Lingua: | English |
Pubblicazione: |
Brac University
2023
|
Soggetti: | |
Accesso online: | http://hdl.handle.net/10361/21844 |
Documenti analoghi
-
A hybrid FL-Enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
di: Chowdhury, Asif Hasan, et al.
Pubblicazione: (2023) -
Prediction of glaucoma from fundus images leveraging transfer learning in deep neural network
di: Ismail, Sayem Mohammad, et al.
Pubblicazione: (2021) -
MalFam: a comprehensive study on malware families with state-of-the-art CNN architectures with classifications and XAI
di: Haque, Abid Hossain, et al.
Pubblicazione: (2024) -
Cassava leaf disease classification using deep learning and convolutional neural network ensemble
di: Shahriar, Hasan, et al.
Pubblicazione: (2022) -
Towards devising an effective and reliable means of fish detection and classification through the exploration of various deep learning algorithms
di: Farhan, Rafid, et al.
Pubblicazione: (2024)