A hybrid FL-enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
Hlavní autoři: | Chowdhury, Asif Hasan, Islam, Md. Fahim, Riad, M Ragib Anjum, Hashem, Faiyaz Bin |
---|---|
Další autoři: | Alam, Md. Golam Rabiul |
Médium: | Diplomová práce |
Jazyk: | English |
Vydáno: |
Brac University
2023
|
Témata: | |
On-line přístup: | http://hdl.handle.net/10361/21844 |
Podobné jednotky
-
A hybrid FL-Enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
Autor: Chowdhury, Asif Hasan, a další
Vydáno: (2023) -
Prediction of glaucoma from fundus images leveraging transfer learning in deep neural network
Autor: Ismail, Sayem Mohammad, a další
Vydáno: (2021) -
MalFam: a comprehensive study on malware families with state-of-the-art CNN architectures with classifications and XAI
Autor: Haque, Abid Hossain, a další
Vydáno: (2024) -
Cassava leaf disease classification using deep learning and convolutional neural network ensemble
Autor: Shahriar, Hasan, a další
Vydáno: (2022) -
Towards devising an effective and reliable means of fish detection and classification through the exploration of various deep learning algorithms
Autor: Farhan, Rafid, a další
Vydáno: (2024)