An efficient deep learning approach for 3D face detection using multiple angular 2D images

This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.

מידע ביבליוגרפי
Main Authors: Rafsan, Nayeem, Nayeem, Hasibul Hoque, Dad, Hamed Efaz Md. Elahi, Yen, Afzal Hossain
מחברים אחרים: Alam, Md. Ashraful
פורמט: Thesis
שפה:English
יצא לאור: Brac University 2023
נושאים:
גישה מקוונת:http://hdl.handle.net/10361/21771
id 10361-21771
record_format dspace
spelling 10361-217712023-10-11T21:04:30Z An efficient deep learning approach for 3D face detection using multiple angular 2D images Rafsan, Nayeem Nayeem, Hasibul Hoque Dad, Hamed Efaz Md. Elahi Yen, Afzal Hossain Alam, Md. Ashraful Department of Computer Science and Engineering, Brac University 3D point cloud Face detection & recognition CNN Next Face Haar cascade This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022. Cataloged from PDF version of thesis. Includes bibliographical references (pages 38-39). 3D face reconstruction is a useful computer vision technique for facial recognition. Accuracy decreases drastically while extracting features from 2D and moving images. To overcome this problem, we are proposing reconstruction of 3D models generated by multiple 2D angular images. Our primary approach consists of the following steps: rebuilding 3D mesh from 2D image, feature extraction, deep learning algorithm for recognition. We will be taking images of 0°, +10°, +20°, +30°, +40°,+50°, +60°, +70°, +80°, +90°, -10°, -20°,-30°, -40°, -50°,-60°, -70°,-80°, -90° angular deviations. We have compared the results from 2D architectures and 3D architectures and showed that 3D deep learning models perform better on angular images and in motion. The proposed method is time efficient and robust in nature, and it overcomes the previous limitations. 2023-10-11T04:25:27Z 2023-10-11T04:25:27Z 2022 2022-09-25 Thesis ID 19101133 ID 19101433 ID 19101304 ID 18201131 http://hdl.handle.net/10361/21771 en Brac University theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. 39 pages application/pdf Brac University
institution Brac University
collection Institutional Repository
language English
topic 3D point cloud
Face detection & recognition
CNN
Next Face
Haar cascade
spellingShingle 3D point cloud
Face detection & recognition
CNN
Next Face
Haar cascade
Rafsan, Nayeem
Nayeem, Hasibul Hoque
Dad, Hamed Efaz Md. Elahi
Yen, Afzal Hossain
An efficient deep learning approach for 3D face detection using multiple angular 2D images
description This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
author2 Alam, Md. Ashraful
author_facet Alam, Md. Ashraful
Rafsan, Nayeem
Nayeem, Hasibul Hoque
Dad, Hamed Efaz Md. Elahi
Yen, Afzal Hossain
format Thesis
author Rafsan, Nayeem
Nayeem, Hasibul Hoque
Dad, Hamed Efaz Md. Elahi
Yen, Afzal Hossain
author_sort Rafsan, Nayeem
title An efficient deep learning approach for 3D face detection using multiple angular 2D images
title_short An efficient deep learning approach for 3D face detection using multiple angular 2D images
title_full An efficient deep learning approach for 3D face detection using multiple angular 2D images
title_fullStr An efficient deep learning approach for 3D face detection using multiple angular 2D images
title_full_unstemmed An efficient deep learning approach for 3D face detection using multiple angular 2D images
title_sort efficient deep learning approach for 3d face detection using multiple angular 2d images
publisher Brac University
publishDate 2023
url http://hdl.handle.net/10361/21771
work_keys_str_mv AT rafsannayeem anefficientdeeplearningapproachfor3dfacedetectionusingmultipleangular2dimages
AT nayeemhasibulhoque anefficientdeeplearningapproachfor3dfacedetectionusingmultipleangular2dimages
AT dadhamedefazmdelahi anefficientdeeplearningapproachfor3dfacedetectionusingmultipleangular2dimages
AT yenafzalhossain anefficientdeeplearningapproachfor3dfacedetectionusingmultipleangular2dimages
AT rafsannayeem efficientdeeplearningapproachfor3dfacedetectionusingmultipleangular2dimages
AT nayeemhasibulhoque efficientdeeplearningapproachfor3dfacedetectionusingmultipleangular2dimages
AT dadhamedefazmdelahi efficientdeeplearningapproachfor3dfacedetectionusingmultipleangular2dimages
AT yenafzalhossain efficientdeeplearningapproachfor3dfacedetectionusingmultipleangular2dimages
_version_ 1814309381075894272