Fire and disaster detection with multimodal quadcopter By machine learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2023.
Asıl Yazarlar: | Afrin, Anika, Rahman, Md Moshiour, Chowdhury, Ayash Hossain, Eshraq, Mirza, Ukasha, Mehvish Rahman |
---|---|
Diğer Yazarlar: | Rahman, Khalilur |
Materyal Türü: | Tez |
Dil: | English |
Baskı/Yayın Bilgisi: |
Brac University
2023
|
Konular: | |
Online Erişim: | http://hdl.handle.net/10361/20208 |
Benzer Materyaller
-
Advancing autonomous navigation: YOLO-based road obstacle detection and segmentation for Bangladeshi environments
Yazar:: Mahmud, Ishtiaque, ve diğerleri
Baskı/Yayın Bilgisi: (2024) -
Real-time garments defects detection at the sewing phase to optimize waste cost using YOLOv7, YOLOv7x, YOLOv7-w6 and Pytorch
Yazar:: Uddin, Md. Minhaz, ve diğerleri
Baskı/Yayın Bilgisi: (2023) -
An ambient assisted living system for Alzheimer’s patients
Yazar:: Abedin, Minhajul, ve diğerleri
Baskı/Yayın Bilgisi: (2023) -
Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
Yazar:: Sanjana, Jasia, ve diğerleri
Baskı/Yayın Bilgisi: (2024) -
Leveraging robust CNN architectures for real-time object recognition from conveyor belt
Yazar:: Moon, Nowrin Tasnim, ve diğerleri
Baskı/Yayın Bilgisi: (2023)