Fire and disaster detection with multimodal quadcopter By machine learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2023.
Huvudupphovsmän: | Afrin, Anika, Rahman, Md Moshiour, Chowdhury, Ayash Hossain, Eshraq, Mirza, Ukasha, Mehvish Rahman |
---|---|
Övriga upphovsmän: | Rahman, Khalilur |
Materialtyp: | Lärdomsprov |
Språk: | English |
Publicerad: |
Brac University
2023
|
Ämnen: | |
Länkar: | http://hdl.handle.net/10361/20208 |
Liknande verk
-
Advancing autonomous navigation: YOLO-based road obstacle detection and segmentation for Bangladeshi environments
av: Mahmud, Ishtiaque, et al.
Publicerad: (2024) -
Real-time garments defects detection at the sewing phase to optimize waste cost using YOLOv7, YOLOv7x, YOLOv7-w6 and Pytorch
av: Uddin, Md. Minhaz, et al.
Publicerad: (2023) -
An ambient assisted living system for Alzheimer’s patients
av: Abedin, Minhajul, et al.
Publicerad: (2023) -
Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
av: Sanjana, Jasia, et al.
Publicerad: (2024) -
Leveraging robust CNN architectures for real-time object recognition from conveyor belt
av: Moon, Nowrin Tasnim, et al.
Publicerad: (2023)