Fire and disaster detection with multimodal quadcopter By machine learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2023.
Główni autorzy: | Afrin, Anika, Rahman, Md Moshiour, Chowdhury, Ayash Hossain, Eshraq, Mirza, Ukasha, Mehvish Rahman |
---|---|
Kolejni autorzy: | Rahman, Khalilur |
Format: | Praca dyplomowa |
Język: | English |
Wydane: |
Brac University
2023
|
Hasła przedmiotowe: | |
Dostęp online: | http://hdl.handle.net/10361/20208 |
Podobne zapisy
-
Advancing autonomous navigation: YOLO-based road obstacle detection and segmentation for Bangladeshi environments
od: Mahmud, Ishtiaque, i wsp.
Wydane: (2024) -
Real-time garments defects detection at the sewing phase to optimize waste cost using YOLOv7, YOLOv7x, YOLOv7-w6 and Pytorch
od: Uddin, Md. Minhaz, i wsp.
Wydane: (2023) -
An ambient assisted living system for Alzheimer’s patients
od: Abedin, Minhajul, i wsp.
Wydane: (2023) -
Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
od: Sanjana, Jasia, i wsp.
Wydane: (2024) -
Leveraging robust CNN architectures for real-time object recognition from conveyor belt
od: Moon, Nowrin Tasnim, i wsp.
Wydane: (2023)