Fire and disaster detection with multimodal quadcopter By machine learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2023.
Autori principali: | Afrin, Anika, Rahman, Md Moshiour, Chowdhury, Ayash Hossain, Eshraq, Mirza, Ukasha, Mehvish Rahman |
---|---|
Altri autori: | Rahman, Khalilur |
Natura: | Tesi |
Lingua: | English |
Pubblicazione: |
Brac University
2023
|
Soggetti: | |
Accesso online: | http://hdl.handle.net/10361/20208 |
Documenti analoghi
-
Advancing autonomous navigation: YOLO-based road obstacle detection and segmentation for Bangladeshi environments
di: Mahmud, Ishtiaque, et al.
Pubblicazione: (2024) -
Real-time garments defects detection at the sewing phase to optimize waste cost using YOLOv7, YOLOv7x, YOLOv7-w6 and Pytorch
di: Uddin, Md. Minhaz, et al.
Pubblicazione: (2023) -
An ambient assisted living system for Alzheimer’s patients
di: Abedin, Minhajul, et al.
Pubblicazione: (2023) -
Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
di: Sanjana, Jasia, et al.
Pubblicazione: (2024) -
Leveraging robust CNN architectures for real-time object recognition from conveyor belt
di: Moon, Nowrin Tasnim, et al.
Pubblicazione: (2023)