Fire and disaster detection with multimodal quadcopter By machine learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2023.
Auteurs principaux: | Afrin, Anika, Rahman, Md Moshiour, Chowdhury, Ayash Hossain, Eshraq, Mirza, Ukasha, Mehvish Rahman |
---|---|
Autres auteurs: | Rahman, Khalilur |
Format: | Thèse |
Langue: | English |
Publié: |
Brac University
2023
|
Sujets: | |
Accès en ligne: | http://hdl.handle.net/10361/20208 |
Documents similaires
-
Advancing autonomous navigation: YOLO-based road obstacle detection and segmentation for Bangladeshi environments
par: Mahmud, Ishtiaque, et autres
Publié: (2024) -
Real-time garments defects detection at the sewing phase to optimize waste cost using YOLOv7, YOLOv7x, YOLOv7-w6 and Pytorch
par: Uddin, Md. Minhaz, et autres
Publié: (2023) -
An ambient assisted living system for Alzheimer’s patients
par: Abedin, Minhajul, et autres
Publié: (2023) -
Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
par: Sanjana, Jasia, et autres
Publié: (2024) -
Leveraging robust CNN architectures for real-time object recognition from conveyor belt
par: Moon, Nowrin Tasnim, et autres
Publié: (2023)