Fire and disaster detection with multimodal quadcopter By machine learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2023.
Autores principales: | Afrin, Anika, Rahman, Md Moshiour, Chowdhury, Ayash Hossain, Eshraq, Mirza, Ukasha, Mehvish Rahman |
---|---|
Otros Autores: | Rahman, Khalilur |
Formato: | Tesis |
Lenguaje: | English |
Publicado: |
Brac University
2023
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/10361/20208 |
Ejemplares similares
-
Advancing autonomous navigation: YOLO-based road obstacle detection and segmentation for Bangladeshi environments
por: Mahmud, Ishtiaque, et al.
Publicado: (2024) -
Real-time garments defects detection at the sewing phase to optimize waste cost using YOLOv7, YOLOv7x, YOLOv7-w6 and Pytorch
por: Uddin, Md. Minhaz, et al.
Publicado: (2023) -
An ambient assisted living system for Alzheimer’s patients
por: Abedin, Minhajul, et al.
Publicado: (2023) -
Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
por: Sanjana, Jasia, et al.
Publicado: (2024) -
Leveraging robust CNN architectures for real-time object recognition from conveyor belt
por: Moon, Nowrin Tasnim, et al.
Publicado: (2023)