Fire and disaster detection with multimodal quadcopter By machine learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2023.
Hauptverfasser: | Afrin, Anika, Rahman, Md Moshiour, Chowdhury, Ayash Hossain, Eshraq, Mirza, Ukasha, Mehvish Rahman |
---|---|
Weitere Verfasser: | Rahman, Khalilur |
Format: | Abschlussarbeit |
Sprache: | English |
Veröffentlicht: |
Brac University
2023
|
Schlagworte: | |
Online Zugang: | http://hdl.handle.net/10361/20208 |
Ähnliche Einträge
-
Advancing autonomous navigation: YOLO-based road obstacle detection and segmentation for Bangladeshi environments
von: Mahmud, Ishtiaque, et al.
Veröffentlicht: (2024) -
Real-time garments defects detection at the sewing phase to optimize waste cost using YOLOv7, YOLOv7x, YOLOv7-w6 and Pytorch
von: Uddin, Md. Minhaz, et al.
Veröffentlicht: (2023) -
An ambient assisted living system for Alzheimer’s patients
von: Abedin, Minhajul, et al.
Veröffentlicht: (2023) -
Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
von: Sanjana, Jasia, et al.
Veröffentlicht: (2024) -
Leveraging robust CNN architectures for real-time object recognition from conveyor belt
von: Moon, Nowrin Tasnim, et al.
Veröffentlicht: (2023)