Fire and disaster detection with multimodal quadcopter By machine learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2023.
Main Authors: | Afrin, Anika, Rahman, Md Moshiour, Chowdhury, Ayash Hossain, Eshraq, Mirza, Ukasha, Mehvish Rahman |
---|---|
Andre forfattere: | Rahman, Khalilur |
Format: | Thesis |
Sprog: | English |
Udgivet: |
Brac University
2023
|
Fag: | |
Online adgang: | http://hdl.handle.net/10361/20208 |
Lignende værker
-
Advancing autonomous navigation: YOLO-based road obstacle detection and segmentation for Bangladeshi environments
af: Mahmud, Ishtiaque, et al.
Udgivet: (2024) -
Real-time garments defects detection at the sewing phase to optimize waste cost using YOLOv7, YOLOv7x, YOLOv7-w6 and Pytorch
af: Uddin, Md. Minhaz, et al.
Udgivet: (2023) -
An ambient assisted living system for Alzheimer’s patients
af: Abedin, Minhajul, et al.
Udgivet: (2023) -
Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
af: Sanjana, Jasia, et al.
Udgivet: (2024) -
Leveraging robust CNN architectures for real-time object recognition from conveyor belt
af: Moon, Nowrin Tasnim, et al.
Udgivet: (2023)