Fire and disaster detection with multimodal quadcopter By machine learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2023.
Autors principals: | Afrin, Anika, Rahman, Md Moshiour, Chowdhury, Ayash Hossain, Eshraq, Mirza, Ukasha, Mehvish Rahman |
---|---|
Altres autors: | Rahman, Khalilur |
Format: | Thesis |
Idioma: | English |
Publicat: |
Brac University
2023
|
Matèries: | |
Accés en línia: | http://hdl.handle.net/10361/20208 |
Ítems similars
-
Advancing autonomous navigation: YOLO-based road obstacle detection and segmentation for Bangladeshi environments
per: Mahmud, Ishtiaque, et al.
Publicat: (2024) -
Real-time garments defects detection at the sewing phase to optimize waste cost using YOLOv7, YOLOv7x, YOLOv7-w6 and Pytorch
per: Uddin, Md. Minhaz, et al.
Publicat: (2023) -
An ambient assisted living system for Alzheimer’s patients
per: Abedin, Minhajul, et al.
Publicat: (2023) -
Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
per: Sanjana, Jasia, et al.
Publicat: (2024) -
Leveraging robust CNN architectures for real-time object recognition from conveyor belt
per: Moon, Nowrin Tasnim, et al.
Publicat: (2023)