An interpretable transformer based approach to classify Malaria from blood cell images
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2023.
Hoofdauteurs: | Islam, Mehafuza, Al Mamun, S.M. Abdulla |
---|---|
Andere auteurs: | Alam, Dr. Md. Ashraful |
Formaat: | Thesis |
Taal: | English |
Gepubliceerd in: |
Brac University
2023
|
Onderwerpen: | |
Online toegang: | http://hdl.handle.net/10361/20000 |
Gelijkaardige items
-
An interpretable diagnosis of retinal diseases using vision transformer and Grad-CAM
door: Bhuiyan, Mahdi Hasan, et al.
Gepubliceerd in: (2024) -
Deep learning-based waste classification system for efficient waste management
door: Nakib, Abdullah Al, et al.
Gepubliceerd in: (2022) -
Deep Learning based Medicinal Plants Leaf Recognition
door: Mahalanabish, Tonusri
Gepubliceerd in: (2023) -
Analysis of transformer and CNN based approaches for classifying renal abnormality from image data
door: Reza, S. M. Mushfiq, et al.
Gepubliceerd in: (2024) -
Performance comparison of CNN architectures for detecting Malaria diseases
door: Rinky, Habiba Karim, et al.
Gepubliceerd in: (2021)