An interpretable transformer based approach to classify Malaria from blood cell images
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2023.
Autori principali: | Islam, Mehafuza, Al Mamun, S.M. Abdulla |
---|---|
Altri autori: | Alam, Dr. Md. Ashraful |
Natura: | Tesi |
Lingua: | English |
Pubblicazione: |
Brac University
2023
|
Soggetti: | |
Accesso online: | http://hdl.handle.net/10361/20000 |
Documenti analoghi
-
An interpretable diagnosis of retinal diseases using vision transformer and Grad-CAM
di: Bhuiyan, Mahdi Hasan, et al.
Pubblicazione: (2024) -
Deep learning-based waste classification system for efficient waste management
di: Nakib, Abdullah Al, et al.
Pubblicazione: (2022) -
Deep Learning based Medicinal Plants Leaf Recognition
di: Mahalanabish, Tonusri
Pubblicazione: (2023) -
Analysis of transformer and CNN based approaches for classifying renal abnormality from image data
di: Reza, S. M. Mushfiq, et al.
Pubblicazione: (2024) -
Performance comparison of CNN architectures for detecting Malaria diseases
di: Rinky, Habiba Karim, et al.
Pubblicazione: (2021)