An interpretable transformer based approach to classify Malaria from blood cell images
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2023.
Autores principales: | Islam, Mehafuza, Al Mamun, S.M. Abdulla |
---|---|
Otros Autores: | Alam, Dr. Md. Ashraful |
Formato: | Tesis |
Lenguaje: | English |
Publicado: |
Brac University
2023
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/10361/20000 |
Ejemplares similares
-
An interpretable diagnosis of retinal diseases using vision transformer and Grad-CAM
por: Bhuiyan, Mahdi Hasan, et al.
Publicado: (2024) -
Deep learning-based waste classification system for efficient waste management
por: Nakib, Abdullah Al, et al.
Publicado: (2022) -
Deep Learning based Medicinal Plants Leaf Recognition
por: Mahalanabish, Tonusri
Publicado: (2023) -
Analysis of transformer and CNN based approaches for classifying renal abnormality from image data
por: Reza, S. M. Mushfiq, et al.
Publicado: (2024) -
Performance comparison of CNN architectures for detecting Malaria diseases
por: Rinky, Habiba Karim, et al.
Publicado: (2021)