Real-time garments defects detection at the sewing phase to optimize waste cost using YOLOv7, YOLOv7x, YOLOv7-w6 and Pytorch
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Päätekijät: | Uddin, Md. Minhaz, Foysal, Sadi Mahmud, Rahman, Sadia, Risti, Nushara Tazrin, Sarmin, Sanzeda Akter |
---|---|
Muut tekijät: | Rhaman, Dr. Md. Khalilur |
Aineistotyyppi: | Opinnäyte |
Kieli: | English |
Julkaistu: |
Brac University
2023
|
Aiheet: | |
Linkit: | http://hdl.handle.net/10361/19356 |
Samankaltaisia teoksia
-
Real-time crime detection using convolutional LSTM and YOLOv7
Tekijä: Sakiba, Cyrus, et al.
Julkaistu: (2023) -
Advancing autonomous navigation: YOLO-based road obstacle detection and segmentation for Bangladeshi environments
Tekijä: Mahmud, Ishtiaque, et al.
Julkaistu: (2024) -
Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
Tekijä: Sanjana, Jasia, et al.
Julkaistu: (2024) -
Fire and disaster detection with multimodal quadcopter By machine learning
Tekijä: Afrin, Anika, et al.
Julkaistu: (2023) -
Multimodal approach to human detection in unconstrained environments using YOLOV7 for conventional, infrared & thermal cameras
Tekijä: Rukaiya, Maymuna, et al.
Julkaistu: (2023)