Malicious data classification in packet data network through hybrid meta deep learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2023.
Päätekijät: | Tapu, Sakib Uddin, Alam Shopnil, Samira Afrin, Tamanna, Rabeya Bosri |
---|---|
Muut tekijät: | Alam, Md. Golam Rabiul |
Aineistotyyppi: | Opinnäyte |
Kieli: | English |
Julkaistu: |
Brac University
2023
|
Aiheet: | |
Linkit: | http://hdl.handle.net/10361/19352 |
Samankaltaisia teoksia
-
Prediction of genetic mutation from clinical data of sickle cell disease using few-shot siamese bidirectional LSTM and federated learning
Tekijä: Alam, Salman, et al.
Julkaistu: (2023) -
A convolutional neural network based model with improved activation function and optimizer for effective intrusion detection and classification
Tekijä: Kabir, Solaiman, et al.
Julkaistu: (2021) -
Comprehensive fingerprint recognition utilizing one shot learning with Siamese Network
Tekijä: Zaman, Sara Milham, et al.
Julkaistu: (2023) -
Analyzing CV/resume using natural language processing and machine learning
Tekijä: Reza, Md. Tanzim, et al.
Julkaistu: (2018) -
Visualization of security vulnerabilities through intrusion detection system
Tekijä: Ahmed, Ibrar, et al.
Julkaistu: (2010)