Malicious data classification in packet data network through hybrid meta deep learning
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2023.
Egile Nagusiak: | Tapu, Sakib Uddin, Alam Shopnil, Samira Afrin, Tamanna, Rabeya Bosri |
---|---|
Beste egile batzuk: | Alam, Md. Golam Rabiul |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2023
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/19352 |
Antzeko izenburuak
-
Prediction of genetic mutation from clinical data of sickle cell disease using few-shot siamese bidirectional LSTM and federated learning
nork: Alam, Salman, et al.
Argitaratua: (2023) -
A convolutional neural network based model with improved activation function and optimizer for effective intrusion detection and classification
nork: Kabir, Solaiman, et al.
Argitaratua: (2021) -
Comprehensive fingerprint recognition utilizing one shot learning with Siamese Network
nork: Zaman, Sara Milham, et al.
Argitaratua: (2023) -
Analyzing CV/resume using natural language processing and machine learning
nork: Reza, Md. Tanzim, et al.
Argitaratua: (2018) -
Visualization of security vulnerabilities through intrusion detection system
nork: Ahmed, Ibrar, et al.
Argitaratua: (2010)