Analyzing the security of e-Health data based on a hybrid federated learning model
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2023.
Egile Nagusiak: | Shafin, Md. Mehtabul Islam, Akhter, Sabrin, Hasan, Mohammad Shafkat, Nasimuzzaman, Md., Prithul, Tamzeedur Rahman |
---|---|
Beste egile batzuk: | Zaman, Shakila |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2023
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/19294 |
Antzeko izenburuak
-
eHealth research, theory, development : multi-disciplinary approach /
Argitaratua: (2018) -
A machine learning approach to analyze and predict rainfall in different regions of Bangladesh
nork: Rahee, Arnob, et al.
Argitaratua: (2021) -
A hybrid FL-Enabled ensemble approach for lung disease diagnosis leveraging fusion of SWIN transformer and CNN
nork: Chowdhury, Asif Hasan, et al.
Argitaratua: (2023) -
A supervised learning approach by machine learning and deep learning algorithms to predict type II DM risk
nork: Farabe, Abdullah Al, et al.
Argitaratua: (2021) -
Heart disease prediction system
nork: Amit, Tayab Al Azad, et al.
Argitaratua: (2022)