Optimal transport theory based GAN for medical image augmentation and classification
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2023.
主要な著者: | Siddiki Shan, Md. Abdul Kahhar, Quaiyum, Md. Abdul, Saha, Sugata, Nayer Anik, S. M. Navin |
---|---|
その他の著者: | Rabiul Alam, Dr. Md. Golam |
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
Brac University
2023
|
主題: | |
オンライン・アクセス: | http://hdl.handle.net/10361/19232 |
類似資料
-
A GAN-based federated learning architecture for data augmentation of medical images
著者:: Al Rakin, Abdullah, 等
出版事項: (2023) -
Federated GAN based biomedical image augmentation and classification for Alzheimer’s disease
著者:: Roy, Aditya, 等
出版事項: (2023) -
Demystify the blackbox model of automated detection of lung and kidney diseases from X-ray and CT radiographs
著者:: Islam, Md. Nazmul
出版事項: (2023) -
Normalizing images in various weather and lighting conditions using Pix2Pix GAN
著者:: Tasnim, Sanjida, 等
出版事項: (2024) -
An efficient deep learning approach for detecting lung disease from chest X-ray images using transfer learning and ensemble modeling
著者:: Sagor, Mostofa Kamal, 等
出版事項: (2021)