Optimal transport theory based GAN for medical image augmentation and classification
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2023.
Egile Nagusiak: | Siddiki Shan, Md. Abdul Kahhar, Quaiyum, Md. Abdul, Saha, Sugata, Nayer Anik, S. M. Navin |
---|---|
Beste egile batzuk: | Rabiul Alam, Dr. Md. Golam |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2023
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/19232 |
Antzeko izenburuak
-
A GAN-based federated learning architecture for data augmentation of medical images
nork: Al Rakin, Abdullah, et al.
Argitaratua: (2023) -
Federated GAN based biomedical image augmentation and classification for Alzheimer’s disease
nork: Roy, Aditya, et al.
Argitaratua: (2023) -
Demystify the blackbox model of automated detection of lung and kidney diseases from X-ray and CT radiographs
nork: Islam, Md. Nazmul
Argitaratua: (2023) -
Normalizing images in various weather and lighting conditions using Pix2Pix GAN
nork: Tasnim, Sanjida, et al.
Argitaratua: (2024) -
An efficient deep learning approach for detecting lung disease from chest X-ray images using transfer learning and ensemble modeling
nork: Sagor, Mostofa Kamal, et al.
Argitaratua: (2021)