Optimal transport theory based GAN for medical image augmentation and classification
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2023.
Main Authors: | Siddiki Shan, Md. Abdul Kahhar, Quaiyum, Md. Abdul, Saha, Sugata, Nayer Anik, S. M. Navin |
---|---|
Andre forfattere: | Rabiul Alam, Dr. Md. Golam |
Format: | Thesis |
Sprog: | English |
Udgivet: |
Brac University
2023
|
Fag: | |
Online adgang: | http://hdl.handle.net/10361/19232 |
Lignende værker
-
A GAN-based federated learning architecture for data augmentation of medical images
af: Al Rakin, Abdullah, et al.
Udgivet: (2023) -
Federated GAN based biomedical image augmentation and classification for Alzheimer’s disease
af: Roy, Aditya, et al.
Udgivet: (2023) -
Demystify the blackbox model of automated detection of lung and kidney diseases from X-ray and CT radiographs
af: Islam, Md. Nazmul
Udgivet: (2023) -
Normalizing images in various weather and lighting conditions using Pix2Pix GAN
af: Tasnim, Sanjida, et al.
Udgivet: (2024) -
An efficient deep learning approach for detecting lung disease from chest X-ray images using transfer learning and ensemble modeling
af: Sagor, Mostofa Kamal, et al.
Udgivet: (2021)