Kidney Disease detection and classification from CT Images using Watershed Segmentation and Deep Learning.
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
Hoofdauteurs: | Hossain, Mohammad Sakib, Hassan, S.M. Nazmul, rahaman, Md. Nakib, Al-Amin, Mohammad, Hossain, Rakib |
---|---|
Andere auteurs: | Hossain, Dr. Muhammad Iqbal |
Formaat: | Thesis |
Taal: | English |
Gepubliceerd in: |
Brac University
2023
|
Onderwerpen: | |
Online toegang: | http://hdl.handle.net/10361/18371 |
Gelijkaardige items
-
Leveraging unsupervised segmentation for semi-supervised renal calculi and carcinoma segmentation and classification
door: Faruk, Farhan, et al.
Gepubliceerd in: (2024) -
Segmentation based Kidney Tumor Classification using Deep Neural Network
door: Mehedi, Md Humaion Kabir, et al.
Gepubliceerd in: (2022) -
Demystify the blackbox model of automated detection of lung and kidney diseases from X-ray and CT radiographs
door: Islam, Md. Nazmul
Gepubliceerd in: (2023) -
Chronic kidney disease detection using ensemble classi ers and feature set reduction
door: Shawan, Naveed Rahman, et al.
Gepubliceerd in: (2019) -
An active-learning based training-schedule for biomedical image segmentation on deep neural networks
door: Hassan, Mehadi, et al.
Gepubliceerd in: (2021)