Analyzing optimization landscape of recent policy optimization methods in deep RL
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
Asıl Yazarlar: | Khan, Mahir Asaf, Ashraf, Adib, Amin, Tahmid Adib |
---|---|
Diğer Yazarlar: | Rashid, Warida |
Materyal Türü: | Tez |
Dil: | English |
Baskı/Yayın Bilgisi: |
Brac University
2023
|
Konular: | |
Online Erişim: | http://hdl.handle.net/10361/18306 |
Benzer Materyaller
-
Implementation of reinforcement learning architecture to augment an AI that can self-learn to play video games
Yazar:: Mahmud, Aqil, ve diğerleri
Baskı/Yayın Bilgisi: (2023) -
ROBB: recurrent proximal policy optimization reinforcement learning for optimal block formation in bitcoin blockchain network
Yazar:: Dutta, Amit
Baskı/Yayın Bilgisi: (2024) -
Combinatorial optimization : algorithms and complexity /
Yazar:: Papadimitriou, Christos H.
Baskı/Yayın Bilgisi: (1998) -
Convex optimization /
Yazar:: Boyd, Stephen P.
Baskı/Yayın Bilgisi: (2004) -
Self-learning game bot using deep reinforcement learning
Yazar:: Ananto, Azizul Haque
Baskı/Yayın Bilgisi: (2018)