Analyzing optimization landscape of recent policy optimization methods in deep RL
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
Huvudupphovsmän: | Khan, Mahir Asaf, Ashraf, Adib, Amin, Tahmid Adib |
---|---|
Övriga upphovsmän: | Rashid, Warida |
Materialtyp: | Lärdomsprov |
Språk: | English |
Publicerad: |
Brac University
2023
|
Ämnen: | |
Länkar: | http://hdl.handle.net/10361/18306 |
Liknande verk
-
Implementation of reinforcement learning architecture to augment an AI that can self-learn to play video games
av: Mahmud, Aqil, et al.
Publicerad: (2023) -
ROBB: recurrent proximal policy optimization reinforcement learning for optimal block formation in bitcoin blockchain network
av: Dutta, Amit
Publicerad: (2024) -
Combinatorial optimization : algorithms and complexity /
av: Papadimitriou, Christos H.
Publicerad: (1998) -
Convex optimization /
av: Boyd, Stephen P.
Publicerad: (2004) -
Self-learning game bot using deep reinforcement learning
av: Ananto, Azizul Haque
Publicerad: (2018)