Analyzing optimization landscape of recent policy optimization methods in deep RL
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
Hoofdauteurs: | Khan, Mahir Asaf, Ashraf, Adib, Amin, Tahmid Adib |
---|---|
Andere auteurs: | Rashid, Warida |
Formaat: | Thesis |
Taal: | English |
Gepubliceerd in: |
Brac University
2023
|
Onderwerpen: | |
Online toegang: | http://hdl.handle.net/10361/18306 |
Gelijkaardige items
-
Implementation of reinforcement learning architecture to augment an AI that can self-learn to play video games
door: Mahmud, Aqil, et al.
Gepubliceerd in: (2023) -
ROBB: recurrent proximal policy optimization reinforcement learning for optimal block formation in bitcoin blockchain network
door: Dutta, Amit
Gepubliceerd in: (2024) -
Combinatorial optimization : algorithms and complexity /
door: Papadimitriou, Christos H.
Gepubliceerd in: (1998) -
Convex optimization /
door: Boyd, Stephen P.
Gepubliceerd in: (2004) -
Self-learning game bot using deep reinforcement learning
door: Ananto, Azizul Haque
Gepubliceerd in: (2018)