Analyzing optimization landscape of recent policy optimization methods in deep RL
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
Egile Nagusiak: | Khan, Mahir Asaf, Ashraf, Adib, Amin, Tahmid Adib |
---|---|
Beste egile batzuk: | Rashid, Warida |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2023
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/18306 |
Antzeko izenburuak
-
Implementation of reinforcement learning architecture to augment an AI that can self-learn to play video games
nork: Mahmud, Aqil, et al.
Argitaratua: (2023) -
ROBB: recurrent proximal policy optimization reinforcement learning for optimal block formation in bitcoin blockchain network
nork: Dutta, Amit
Argitaratua: (2024) -
Combinatorial optimization : algorithms and complexity /
nork: Papadimitriou, Christos H.
Argitaratua: (1998) -
Convex optimization /
nork: Boyd, Stephen P.
Argitaratua: (2004) -
Self-learning game bot using deep reinforcement learning
nork: Ananto, Azizul Haque
Argitaratua: (2018)