Analyzing optimization landscape of recent policy optimization methods in deep RL
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
Autors principals: | Khan, Mahir Asaf, Ashraf, Adib, Amin, Tahmid Adib |
---|---|
Altres autors: | Rashid, Warida |
Format: | Thesis |
Idioma: | English |
Publicat: |
Brac University
2023
|
Matèries: | |
Accés en línia: | http://hdl.handle.net/10361/18306 |
Ítems similars
-
Implementation of reinforcement learning architecture to augment an AI that can self-learn to play video games
per: Mahmud, Aqil, et al.
Publicat: (2023) -
ROBB: recurrent proximal policy optimization reinforcement learning for optimal block formation in bitcoin blockchain network
per: Dutta, Amit
Publicat: (2024) -
Combinatorial optimization : algorithms and complexity /
per: Papadimitriou, Christos H.
Publicat: (1998) -
Convex optimization /
per: Boyd, Stephen P.
Publicat: (2004) -
Self-learning game bot using deep reinforcement learning
per: Ananto, Azizul Haque
Publicat: (2018)