RetinalNet-500: a newly developed CNN model for eye disease detection
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
Główni autorzy: | Toki, Sadikul Alim, Rahman, Sohanoor, Fahim, SM Mohtasim Billah, Mostakim, Abdullah Al |
---|---|
Kolejni autorzy: | Rahman, Md. Khalilur |
Format: | Praca dyplomowa |
Język: | English |
Wydane: |
Brac University
2023
|
Hasła przedmiotowe: | |
Dostęp online: | http://hdl.handle.net/10361/18039 |
Podobne zapisy
-
Protovision: utilizing prototypical networks for retinal diseases classification based on few-shot learning
od: Nabil, Sheikh MD. Nafis Noor, i wsp.
Wydane: (2024) -
A secured federated learning system leveraging confidence score to identify retinal disease
od: Eshan, M Sakib Osman, i wsp.
Wydane: (2023) -
Deep learning based early Glaucoma detection
od: Islam, Aabrar, i wsp.
Wydane: (2024) -
An interpretable diagnosis of retinal diseases using vision transformer and Grad-CAM
od: Bhuiyan, Mahdi Hasan, i wsp.
Wydane: (2024) -
Efficient image processing and machine learning approach for predicting retinal diseases
od: Hasib, Mehadi Hasan, i wsp.
Wydane: (2021)