RetinalNet-500: a newly developed CNN model for eye disease detection
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
Autori principali: | Toki, Sadikul Alim, Rahman, Sohanoor, Fahim, SM Mohtasim Billah, Mostakim, Abdullah Al |
---|---|
Altri autori: | Rahman, Md. Khalilur |
Natura: | Tesi |
Lingua: | English |
Pubblicazione: |
Brac University
2023
|
Soggetti: | |
Accesso online: | http://hdl.handle.net/10361/18039 |
Documenti analoghi
-
Protovision: utilizing prototypical networks for retinal diseases classification based on few-shot learning
di: Nabil, Sheikh MD. Nafis Noor, et al.
Pubblicazione: (2024) -
A secured federated learning system leveraging confidence score to identify retinal disease
di: Eshan, M Sakib Osman, et al.
Pubblicazione: (2023) -
Deep learning based early Glaucoma detection
di: Islam, Aabrar, et al.
Pubblicazione: (2024) -
An interpretable diagnosis of retinal diseases using vision transformer and Grad-CAM
di: Bhuiyan, Mahdi Hasan, et al.
Pubblicazione: (2024) -
Efficient image processing and machine learning approach for predicting retinal diseases
di: Hasib, Mehadi Hasan, et al.
Pubblicazione: (2021)