RetinalNet-500: a newly developed CNN model for eye disease detection
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
Auteurs principaux: | Toki, Sadikul Alim, Rahman, Sohanoor, Fahim, SM Mohtasim Billah, Mostakim, Abdullah Al |
---|---|
Autres auteurs: | Rahman, Md. Khalilur |
Format: | Thèse |
Langue: | English |
Publié: |
Brac University
2023
|
Sujets: | |
Accès en ligne: | http://hdl.handle.net/10361/18039 |
Documents similaires
-
Protovision: utilizing prototypical networks for retinal diseases classification based on few-shot learning
par: Nabil, Sheikh MD. Nafis Noor, et autres
Publié: (2024) -
A secured federated learning system leveraging confidence score to identify retinal disease
par: Eshan, M Sakib Osman, et autres
Publié: (2023) -
Deep learning based early Glaucoma detection
par: Islam, Aabrar, et autres
Publié: (2024) -
An interpretable diagnosis of retinal diseases using vision transformer and Grad-CAM
par: Bhuiyan, Mahdi Hasan, et autres
Publié: (2024) -
Efficient image processing and machine learning approach for predicting retinal diseases
par: Hasib, Mehadi Hasan, et autres
Publié: (2021)