RetinalNet-500: a newly developed CNN model for eye disease detection
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
Päätekijät: | Toki, Sadikul Alim, Rahman, Sohanoor, Fahim, SM Mohtasim Billah, Mostakim, Abdullah Al |
---|---|
Muut tekijät: | Rahman, Md. Khalilur |
Aineistotyyppi: | Opinnäyte |
Kieli: | English |
Julkaistu: |
Brac University
2023
|
Aiheet: | |
Linkit: | http://hdl.handle.net/10361/18039 |
Samankaltaisia teoksia
-
Protovision: utilizing prototypical networks for retinal diseases classification based on few-shot learning
Tekijä: Nabil, Sheikh MD. Nafis Noor, et al.
Julkaistu: (2024) -
A secured federated learning system leveraging confidence score to identify retinal disease
Tekijä: Eshan, M Sakib Osman, et al.
Julkaistu: (2023) -
Deep learning based early Glaucoma detection
Tekijä: Islam, Aabrar, et al.
Julkaistu: (2024) -
An interpretable diagnosis of retinal diseases using vision transformer and Grad-CAM
Tekijä: Bhuiyan, Mahdi Hasan, et al.
Julkaistu: (2024) -
Efficient image processing and machine learning approach for predicting retinal diseases
Tekijä: Hasib, Mehadi Hasan, et al.
Julkaistu: (2021)