RetinalNet-500: a newly developed CNN model for eye disease detection
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
Egile Nagusiak: | Toki, Sadikul Alim, Rahman, Sohanoor, Fahim, SM Mohtasim Billah, Mostakim, Abdullah Al |
---|---|
Beste egile batzuk: | Rahman, Md. Khalilur |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2023
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/18039 |
Antzeko izenburuak
-
Protovision: utilizing prototypical networks for retinal diseases classification based on few-shot learning
nork: Nabil, Sheikh MD. Nafis Noor, et al.
Argitaratua: (2024) -
A secured federated learning system leveraging confidence score to identify retinal disease
nork: Eshan, M Sakib Osman, et al.
Argitaratua: (2023) -
Deep learning based early Glaucoma detection
nork: Islam, Aabrar, et al.
Argitaratua: (2024) -
An interpretable diagnosis of retinal diseases using vision transformer and Grad-CAM
nork: Bhuiyan, Mahdi Hasan, et al.
Argitaratua: (2024) -
Efficient image processing and machine learning approach for predicting retinal diseases
nork: Hasib, Mehadi Hasan, et al.
Argitaratua: (2021)