RetinalNet-500: a newly developed CNN model for eye disease detection
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
Autores principales: | Toki, Sadikul Alim, Rahman, Sohanoor, Fahim, SM Mohtasim Billah, Mostakim, Abdullah Al |
---|---|
Otros Autores: | Rahman, Md. Khalilur |
Formato: | Tesis |
Lenguaje: | English |
Publicado: |
Brac University
2023
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/10361/18039 |
Ejemplares similares
-
Protovision: utilizing prototypical networks for retinal diseases classification based on few-shot learning
por: Nabil, Sheikh MD. Nafis Noor, et al.
Publicado: (2024) -
A secured federated learning system leveraging confidence score to identify retinal disease
por: Eshan, M Sakib Osman, et al.
Publicado: (2023) -
Deep learning based early Glaucoma detection
por: Islam, Aabrar, et al.
Publicado: (2024) -
An interpretable diagnosis of retinal diseases using vision transformer and Grad-CAM
por: Bhuiyan, Mahdi Hasan, et al.
Publicado: (2024) -
Efficient image processing and machine learning approach for predicting retinal diseases
por: Hasib, Mehadi Hasan, et al.
Publicado: (2021)