RetinalNet-500: a newly developed CNN model for eye disease detection
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
Hauptverfasser: | Toki, Sadikul Alim, Rahman, Sohanoor, Fahim, SM Mohtasim Billah, Mostakim, Abdullah Al |
---|---|
Weitere Verfasser: | Rahman, Md. Khalilur |
Format: | Abschlussarbeit |
Sprache: | English |
Veröffentlicht: |
Brac University
2023
|
Schlagworte: | |
Online Zugang: | http://hdl.handle.net/10361/18039 |
Ähnliche Einträge
-
Protovision: utilizing prototypical networks for retinal diseases classification based on few-shot learning
von: Nabil, Sheikh MD. Nafis Noor, et al.
Veröffentlicht: (2024) -
A secured federated learning system leveraging confidence score to identify retinal disease
von: Eshan, M Sakib Osman, et al.
Veröffentlicht: (2023) -
Deep learning based early Glaucoma detection
von: Islam, Aabrar, et al.
Veröffentlicht: (2024) -
An interpretable diagnosis of retinal diseases using vision transformer and Grad-CAM
von: Bhuiyan, Mahdi Hasan, et al.
Veröffentlicht: (2024) -
Efficient image processing and machine learning approach for predicting retinal diseases
von: Hasib, Mehadi Hasan, et al.
Veröffentlicht: (2021)