RetinalNet-500: a newly developed CNN model for eye disease detection
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
Autors principals: | Toki, Sadikul Alim, Rahman, Sohanoor, Fahim, SM Mohtasim Billah, Mostakim, Abdullah Al |
---|---|
Altres autors: | Rahman, Md. Khalilur |
Format: | Thesis |
Idioma: | English |
Publicat: |
Brac University
2023
|
Matèries: | |
Accés en línia: | http://hdl.handle.net/10361/18039 |
Ítems similars
-
Protovision: utilizing prototypical networks for retinal diseases classification based on few-shot learning
per: Nabil, Sheikh MD. Nafis Noor, et al.
Publicat: (2024) -
A secured federated learning system leveraging confidence score to identify retinal disease
per: Eshan, M Sakib Osman, et al.
Publicat: (2023) -
Deep learning based early Glaucoma detection
per: Islam, Aabrar, et al.
Publicat: (2024) -
An interpretable diagnosis of retinal diseases using vision transformer and Grad-CAM
per: Bhuiyan, Mahdi Hasan, et al.
Publicat: (2024) -
Efficient image processing and machine learning approach for predicting retinal diseases
per: Hasib, Mehadi Hasan, et al.
Publicat: (2021)