Drug resistance in respiratory infections and Lysin as a Potential Therapeutics: A review
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Microbiology, 2022.
Principais autores: | , , , |
---|---|
Outros Autores: | |
Formato: | Tese |
Idioma: | en_US |
Publicado em: |
2023
|
Assuntos: | |
Acesso em linha: | http://hdl.handle.net/10361/17711 |
id |
10361-17711 |
---|---|
record_format |
dspace |
spelling |
10361-177112023-01-10T21:05:22Z Drug resistance in respiratory infections and Lysin as a Potential Therapeutics: A review Seeam, Tanveer Ahmed Dey, Shajib Sadmeen, Sanjana Tannum, Afifa Monjurul Haque, Fahim Kabir Department of Mathematics and Natural Sciences, Brac University Respiratory infections Drug-resistant Potential alternative Bacteriophage-encoded lytic enzymes Peptidoglycan Lysin. Drug resistance in microorganisms Drug resistance This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Microbiology, 2022. Catalogued from PDF version of thesis. Includes bibliographical references (pages 46-74). The emergence and spread of respiratory drug-resistant bacteria that have gained novel resistance mechanisms, resulting in antimicrobial resistance, continues to pose a danger to our capacity to treat common respiratory infections. The primary objective of this paper's findings is to address this major problem. Bacteriophage-encoded lytic enzymes have long been studied as a potential alternative to antibiotics in the fight against bacterial infections. These enzymes, which function by degrading peptidoglycan, a crucial part of the bacterial cell wall, have an antibacterial effect. Multiple studies have previously shown that using different lysins to counteract various pathogenic bacteria that cause respiratory tract infections has had positive outcomes. High-dose Cpl-1 eliminates Streptococcus pneumoniae faster than vancomycin and stimulates cytokine production. Lysin 23TH 48 is effective against Streptococcus pneumoniae. LysP108's unique amino acid sequence and domain structure may be combined with drugs to prevent bacterial antibiotic resistance. Streptococcus pyogenes cells could be destroyed by PlyC, a unique multimeric enzyme that is effective against group A streptococci. Art-175 is a thermostable artilysin produced by mixing lysin KZ144 with sheep myeloid AMP-29 (SMAP-29). Art-175 suppressed persister development, a post-antibiotic bacterial subpopulation. LysCA and LysG24 may reduce pulmonary inflammation and LPKP growth. Clinical symptoms and bacterial load in the mouse lungs favored LysCA. LysAB3, LysAB4, PlyAB1, and LysABP-01 were designed to kill Acitenobacter baumannii. PlyF307 may kill planktonic and biofilm Acitenobacter baumannii isolates, including MDR strains. This review study addressed the significant antibiotic resistance of respiratory pathogens that are no longer effectively treated by antibiotics and demonstrated an alternative, the use of lysin, based on several successful in vivo and in vitro studies. Tanveer Ahmed Seeam Shajib Dey Sanjana Sadmeen Afifa Tannum B. Microbiology 2023-01-10T09:01:41Z 2023-01-10T09:01:41Z 2022 2022-07 Thesis ID: 18126055 ID: 18126025 ID: 18126045 ID: 18126043 http://hdl.handle.net/10361/17711 en_US Brac University theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. 74 Pages application/pdf |
institution |
Brac University |
collection |
Institutional Repository |
language |
en_US |
topic |
Respiratory infections Drug-resistant Potential alternative Bacteriophage-encoded lytic enzymes Peptidoglycan Lysin. Drug resistance in microorganisms Drug resistance |
spellingShingle |
Respiratory infections Drug-resistant Potential alternative Bacteriophage-encoded lytic enzymes Peptidoglycan Lysin. Drug resistance in microorganisms Drug resistance Seeam, Tanveer Ahmed Dey, Shajib Sadmeen, Sanjana Tannum, Afifa Drug resistance in respiratory infections and Lysin as a Potential Therapeutics: A review |
description |
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Microbiology, 2022. |
author2 |
Monjurul Haque, Fahim Kabir |
author_facet |
Monjurul Haque, Fahim Kabir Seeam, Tanveer Ahmed Dey, Shajib Sadmeen, Sanjana Tannum, Afifa |
format |
Thesis |
author |
Seeam, Tanveer Ahmed Dey, Shajib Sadmeen, Sanjana Tannum, Afifa |
author_sort |
Seeam, Tanveer Ahmed |
title |
Drug resistance in respiratory infections and Lysin as a Potential Therapeutics: A review |
title_short |
Drug resistance in respiratory infections and Lysin as a Potential Therapeutics: A review |
title_full |
Drug resistance in respiratory infections and Lysin as a Potential Therapeutics: A review |
title_fullStr |
Drug resistance in respiratory infections and Lysin as a Potential Therapeutics: A review |
title_full_unstemmed |
Drug resistance in respiratory infections and Lysin as a Potential Therapeutics: A review |
title_sort |
drug resistance in respiratory infections and lysin as a potential therapeutics: a review |
publishDate |
2023 |
url |
http://hdl.handle.net/10361/17711 |
work_keys_str_mv |
AT seeamtanveerahmed drugresistanceinrespiratoryinfectionsandlysinasapotentialtherapeuticsareview AT deyshajib drugresistanceinrespiratoryinfectionsandlysinasapotentialtherapeuticsareview AT sadmeensanjana drugresistanceinrespiratoryinfectionsandlysinasapotentialtherapeuticsareview AT tannumafifa drugresistanceinrespiratoryinfectionsandlysinasapotentialtherapeuticsareview |
_version_ |
1814309133872005120 |