Customer segmentation using K-means

This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.

Մատենագիտական մանրամասներ
Հիմնական հեղինակներ: Mahdee, Nafis, Shourav, Ishrak Rahman, Tabassum, Tasneem, Nur, Eman, Md Amir, Hamza Howlader
Այլ հեղինակներ: Rasel, Annajiat Alim
Ձևաչափ: Թեզիս
Լեզու:en_US
Հրապարակվել է: Brac University 2022
Խորագրեր:
Առցանց հասանելիություն:http://hdl.handle.net/10361/17617
id 10361-17617
record_format dspace
spelling 10361-176172022-11-24T21:01:36Z Customer segmentation using K-means Mahdee, Nafis Shourav, Ishrak Rahman Tabassum, Tasneem Nur, Eman Md Amir, Hamza Howlader Rasel, Annajiat Alim Department of Computer Science and Engineering, Brac University Segmentation Customer segmentation Clustering K-means RFM LRFM PCA Data mining Machine learning Natural computation--Congresses. This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022. Cataloged from PDF version of thesis. Includes bibliographical references (pages 35-37). Sales Maximization is a critical aspect of operating any business. Our thesis aims to help businesses to probe deep into their market reach as we group customers us ing the customer segmentation approach. Our dataset is formed based on customer behavior and purchase history. The outcome of this organized study is expected to yield powerful insights in predicting consumer purchasing behavior and related pat terns. Using the K-means algorithm, we analyze real-time transactional and retail datasets. The analyzed data forecasts purchasing patterns and behavior of cus tomers. This study uses the RMF (Recency, Frequency Monetary), LRFM (Length, Recency, Frequency, Monetary), and PCA model deploying K-means on a dataset. The results thus obtained concerning sales transactions are compared with multiple parameters like Sales Recency, Sales Frequency, and Sales Volume. Nafis Mahdee Ishrak Rahman Shourav Tasneem Tabassum Eman Nur Md Amir Hamza Howlader B. Computer Science and Engineering 2022-11-24T08:40:11Z 2022-11-24T08:40:11Z 2022 2022-05 Thesis http://hdl.handle.net/10361/17617 en_US Brac University theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. 37 Pages ID: 18301035 ID: 18101664 ID: 17101219 ID: 17101375 ID: 17101528 application/pdf Brac University
institution Brac University
collection Institutional Repository
language en_US
topic Segmentation
Customer segmentation
Clustering
K-means
RFM
LRFM
PCA
Data mining
Machine learning
Natural computation--Congresses.
spellingShingle Segmentation
Customer segmentation
Clustering
K-means
RFM
LRFM
PCA
Data mining
Machine learning
Natural computation--Congresses.
Mahdee, Nafis
Shourav, Ishrak Rahman
Tabassum, Tasneem
Nur, Eman
Md Amir, Hamza Howlader
Customer segmentation using K-means
description This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
author2 Rasel, Annajiat Alim
author_facet Rasel, Annajiat Alim
Mahdee, Nafis
Shourav, Ishrak Rahman
Tabassum, Tasneem
Nur, Eman
Md Amir, Hamza Howlader
format Thesis
author Mahdee, Nafis
Shourav, Ishrak Rahman
Tabassum, Tasneem
Nur, Eman
Md Amir, Hamza Howlader
author_sort Mahdee, Nafis
title Customer segmentation using K-means
title_short Customer segmentation using K-means
title_full Customer segmentation using K-means
title_fullStr Customer segmentation using K-means
title_full_unstemmed Customer segmentation using K-means
title_sort customer segmentation using k-means
publisher Brac University
publishDate 2022
url http://hdl.handle.net/10361/17617
work_keys_str_mv AT mahdeenafis customersegmentationusingkmeans
AT shouravishrakrahman customersegmentationusingkmeans
AT tabassumtasneem customersegmentationusingkmeans
AT nureman customersegmentationusingkmeans
AT mdamirhamzahowlader customersegmentationusingkmeans
_version_ 1814307204426104832