Occluded object detection for autonomous vehicles employing YOLOv5, YOLOX and Faster R-CNN
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science, 2022.
Egile Nagusiak: | Mostafa, Tanzim, Chowdhury, Sartaj Jamal |
---|---|
Beste egile batzuk: | Rhaman, Dr. Md. Khalilur |
Formatua: | Thesis |
Hizkuntza: | en_US |
Argitaratua: |
Brac University
2022
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/17614 |
Antzeko izenburuak
-
Reinforcement learning based autonomous vehicle for exploration and exploitation of undiscovered track
nork: Issa, Razin Bin, et al.
Argitaratua: (2020) -
Introducing AI in garment fault detection using YOLOv5 to reduce bottleneck
nork: Sanjana, Jasia, et al.
Argitaratua: (2024) -
A deep learning based autonomous electric vehicle on unstructured road conditions
nork: Adnan, Ashik, et al.
Argitaratua: (2021) -
Normalizing images in various weather and lighting conditions using Pix2Pix GAN
nork: Tasnim, Sanjida, et al.
Argitaratua: (2024) -
Damaged road detection using Image Processing and Deep Learning
nork: Swadesh, Shimran Mahbub, et al.
Argitaratua: (2022)