An efficient deep learning approach to detect retinal disease using optical coherence tomographic images
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
Główni autorzy: | Khan, Farhan Sakib, Ferdaus, Nowshin, Hossain, Tamim, Islam, Quazi Sabrina, Islam, Md. Iftakharul |
---|---|
Kolejni autorzy: | Alam, Md. Ashraful |
Format: | Praca dyplomowa |
Język: | English |
Wydane: |
Brac University
2022
|
Hasła przedmiotowe: | |
Dostęp online: | http://hdl.handle.net/10361/17570 |
Podobne zapisy
-
Detection of intracranial hemorrhage on CT scan images using convolutional neural network
od: Rahman, Afridi Ibn, i wsp.
Wydane: (2022) -
Citrus leaf disease detection by image processing
od: Chowdhury, Mahir Faisal, i wsp.
Wydane: (2024) -
Analyzing students’ concentration in online courses through Webcam
od: Asif, Md., i wsp.
Wydane: (2024) -
Prediction of glaucoma from fundus images leveraging transfer learning in deep neural network
od: Ismail, Sayem Mohammad, i wsp.
Wydane: (2021) -
MalFam: a comprehensive study on malware families with state-of-the-art CNN architectures with classifications and XAI
od: Haque, Abid Hossain, i wsp.
Wydane: (2024)