An efficient deep learning approach to detect retinal disease using optical coherence tomographic images
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
Autori principali: | Khan, Farhan Sakib, Ferdaus, Nowshin, Hossain, Tamim, Islam, Quazi Sabrina, Islam, Md. Iftakharul |
---|---|
Altri autori: | Alam, Md. Ashraful |
Natura: | Tesi |
Lingua: | English |
Pubblicazione: |
Brac University
2022
|
Soggetti: | |
Accesso online: | http://hdl.handle.net/10361/17570 |
Documenti analoghi
-
Detection of intracranial hemorrhage on CT scan images using convolutional neural network
di: Rahman, Afridi Ibn, et al.
Pubblicazione: (2022) -
Citrus leaf disease detection by image processing
di: Chowdhury, Mahir Faisal, et al.
Pubblicazione: (2024) -
Analyzing students’ concentration in online courses through Webcam
di: Asif, Md., et al.
Pubblicazione: (2024) -
Prediction of glaucoma from fundus images leveraging transfer learning in deep neural network
di: Ismail, Sayem Mohammad, et al.
Pubblicazione: (2021) -
MalFam: a comprehensive study on malware families with state-of-the-art CNN architectures with classifications and XAI
di: Haque, Abid Hossain, et al.
Pubblicazione: (2024)