An efficient deep learning approach to detect retinal disease using optical coherence tomographic images
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
Auteurs principaux: | Khan, Farhan Sakib, Ferdaus, Nowshin, Hossain, Tamim, Islam, Quazi Sabrina, Islam, Md. Iftakharul |
---|---|
Autres auteurs: | Alam, Md. Ashraful |
Format: | Thèse |
Langue: | English |
Publié: |
Brac University
2022
|
Sujets: | |
Accès en ligne: | http://hdl.handle.net/10361/17570 |
Documents similaires
-
Detection of intracranial hemorrhage on CT scan images using convolutional neural network
par: Rahman, Afridi Ibn, et autres
Publié: (2022) -
Citrus leaf disease detection by image processing
par: Chowdhury, Mahir Faisal, et autres
Publié: (2024) -
Analyzing students’ concentration in online courses through Webcam
par: Asif, Md., et autres
Publié: (2024) -
Prediction of glaucoma from fundus images leveraging transfer learning in deep neural network
par: Ismail, Sayem Mohammad, et autres
Publié: (2021) -
MalFam: a comprehensive study on malware families with state-of-the-art CNN architectures with classifications and XAI
par: Haque, Abid Hossain, et autres
Publié: (2024)