An efficient deep learning approach to detect retinal disease using optical coherence tomographic images
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
Päätekijät: | Khan, Farhan Sakib, Ferdaus, Nowshin, Hossain, Tamim, Islam, Quazi Sabrina, Islam, Md. Iftakharul |
---|---|
Muut tekijät: | Alam, Md. Ashraful |
Aineistotyyppi: | Opinnäyte |
Kieli: | English |
Julkaistu: |
Brac University
2022
|
Aiheet: | |
Linkit: | http://hdl.handle.net/10361/17570 |
Samankaltaisia teoksia
-
Detection of intracranial hemorrhage on CT scan images using convolutional neural network
Tekijä: Rahman, Afridi Ibn, et al.
Julkaistu: (2022) -
Citrus leaf disease detection by image processing
Tekijä: Chowdhury, Mahir Faisal, et al.
Julkaistu: (2024) -
Analyzing students’ concentration in online courses through Webcam
Tekijä: Asif, Md., et al.
Julkaistu: (2024) -
Prediction of glaucoma from fundus images leveraging transfer learning in deep neural network
Tekijä: Ismail, Sayem Mohammad, et al.
Julkaistu: (2021) -
MalFam: a comprehensive study on malware families with state-of-the-art CNN architectures with classifications and XAI
Tekijä: Haque, Abid Hossain, et al.
Julkaistu: (2024)