An efficient deep learning approach to detect retinal disease using optical coherence tomographic images
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
Egile Nagusiak: | Khan, Farhan Sakib, Ferdaus, Nowshin, Hossain, Tamim, Islam, Quazi Sabrina, Islam, Md. Iftakharul |
---|---|
Beste egile batzuk: | Alam, Md. Ashraful |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
Brac University
2022
|
Gaiak: | |
Sarrera elektronikoa: | http://hdl.handle.net/10361/17570 |
Antzeko izenburuak
-
Detection of intracranial hemorrhage on CT scan images using convolutional neural network
nork: Rahman, Afridi Ibn, et al.
Argitaratua: (2022) -
Citrus leaf disease detection by image processing
nork: Chowdhury, Mahir Faisal, et al.
Argitaratua: (2024) -
Analyzing students’ concentration in online courses through Webcam
nork: Asif, Md., et al.
Argitaratua: (2024) -
Prediction of glaucoma from fundus images leveraging transfer learning in deep neural network
nork: Ismail, Sayem Mohammad, et al.
Argitaratua: (2021) -
MalFam: a comprehensive study on malware families with state-of-the-art CNN architectures with classifications and XAI
nork: Haque, Abid Hossain, et al.
Argitaratua: (2024)