Plant disease diagnosis using deep transfer learning architectures- VGG19, MobileNetV2 and Inception-V3
This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2022.
Asıl Yazarlar: | Kobra, Khadija-Tul, Suham, Rahmatul Rashid, Fairooz, Maisha |
---|---|
Diğer Yazarlar: | Uddin, Jia |
Materyal Türü: | Tez |
Dil: | English |
Baskı/Yayın Bilgisi: |
Brac University
2022
|
Konular: | |
Online Erişim: | http://hdl.handle.net/10361/17334 |
Benzer Materyaller
-
Myocardial infarction detection using ECG signal applying deep learning techniques - ConvNet, VGG16, InceptionV3 and MobileNet
Yazar:: Promita, Samanta Tabassum, ve diğerleri
Baskı/Yayın Bilgisi: (2022) -
Comparative analysis between Inception-v3 and other learning systems using facial expressions detection
Yazar:: Nivrito, AKM, ve diğerleri
Baskı/Yayın Bilgisi: (2016) -
Deep neural network models for COVID-19 diagnosis from CT-Scan, explainability and analysis using trained models
Yazar:: Islam, Tahsin, ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
A comparative study of lung cancer prediction using deep learning
Yazar:: Mugdho, Aka Mohammad, ve diğerleri
Baskı/Yayın Bilgisi: (2023) -
Detection of prodromal parkinson’s disease with fMRI data and deep neural network approaches
Yazar:: Shahriar, Farhan, ve diğerleri
Baskı/Yayın Bilgisi: (2021)